
q, heat flux density, W/m2; R, radius, m; r, latent heat of crystallization, J/kg; r*, la- 
tent heat of vaporization, J/kg; AT, superheat, K; W, volume, m3; ~, porosity; Pm, permea- 
bility, m2; ~, heat-transfer coefficient, W/(m2.K); 6, angle of inclination of the pouring- 
channel system, deg; 6, thickness, m; e, contact angle, deg; D, viscosity, N.sec/m2; o, 
surface tension, N/m; p, density, kg/m3; ~, time, sec. Indices: in, internal; s liquid; 
cn, condenser; cp, capillary-porous; mo, mold (crystallization); crt, critical; s, strip; 
co, cooling; v, vapor; cd, corrected; s.m, superheat of melt; m, melt; fi, fin; wa, wall. 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

LITERATURE CITED 

"Method of cooling rotating rolls," Japanese Patent Application No. 61-43148, 1982. 
Izobr. Stran Mira, No. 9 (1986). 
A. I. Veinik, Permanent Mold [in Russian], Minsk (1972). 
"Device for the production of metal strip," Inventor's Cert. No. 1,452,649 SSSR: 
MKI B 22 D 11/06. 
A. N. Abramenko, A. S. Kalinichenko, M. A. Antonevich, and E. D. Sychikov, Inzh.-Fiz. 
Zh., 55, No. i, 117-122 (1988). 
E. A. Gurvich, N. P. Zhmakin, A. S. Kalinichenko, et al., Metallurgy, Minsk (1989), 
pp. 88-90. 
L. Tong, Heat Transfer in Boiling and Two-Phase Flow [Russian translation], Moscow 
(1960). 
J. M. Adams, A Study of the Critical Heat Flux in Accelerating Pool Boiling System, 
NSF-19697, Univ. Washington (1962). 
L. L. Vasil'ev, V. G. Kiselev, Yu. N. Matveev, and F. F. Molodkin, Heat Exchangers 
Based on Heat Pipes [in Russian], Minsk (1987). 
M. A. Mikheev and I. M. Mikheeva, Principles of Heat Transfer [in Russian], Moscow 
(1973). 

POSSIBILITY OF EXPANDING THE STABILITY DOMAIN 

OF THE FIBER DRAWING PROCESS 

V. L. Kolpashchikov, Yu. I. Lanin, O. G. Martynenko, 
and A. I. Shnip 

UDC 532.51:532.522 

It is shown that the fiber drawing process in the constant viscosity mode be- 
comes more stable when the initial jet rate depends on the tensile force. 
In the particular case of a directly proportional dependence, the drawing 
process is stable for any values of the necking factor. Stability patterns 
of the process and amplitude-frequency characteristics are represented. 

It is known that the fiber drawing process becomes unstable when the velocity coeffi- 
cient (the ratio between the drawing velocity and the supply velocity) exceeds a certain 
critical value. Thus, the critical value of the rate coefficient is a quantity of the order 
of 20 [i, 2] for drawing in a constant viscosity mode. Because of buckling the drawing pro- 
cess goes over into a self-oscillatory mode for which the fiber output parameter can differ 
substantially from the given value. This phenomenon, called "drawing resonance" was detect- 
ed both theoretically and experimentally [3-5]. However, processes realizable stably for 
significantly higher velocity ratios than that mentioned above are known in many technical 
applications. This turns out to be possible because of the action of a number of stabiliz- 
ing factors in real processes. One such factor is the nonconstancy of viscosity along the 
jet due to the spatial inhomogeneity of its temperature. Another such factor, although 

A. V. Lykov Institute of Heat and Mass Transfer. Academy of Sciences of the Belorussian 
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less substantial than the first is the influence of the space-time jet velocity fluctua- 
tions on its temperature distribution due to heat transfer, and therefore, on the viscosity 

also. 

In this paper we indicate the possibility of realizing still another substantial sta- 
bilizing factor, namely: The stability of the process is raised significantly if the supply 
velocity or drawing velocity depends on the drawing force. Moreover, in one particular 
case when the delivery velocity is directly proportional to the drawing force the process 
of drawing with a constant flow remains stable for any values of the rate factor. It is 
essential here that such drawing conditions, that raise its stability, be realizable easily 
by passive methods in practice, i.e., without utilization of performance mechanisms requir- 
ing external energy sources, and without information feedback channels. Let us note that 
in the case of fiber formation by a draw-plate method there is always an essential depen- 
dence of the initial jet velocity on the drawing force that results in a rise in process 
stability since the drawing force introduces a contribution to the pressure drop between 
the draw-plate input and output, which in turn governs the fluid mass flow rate through 
it. 

In conformity with the above, we give the delivery velocity of the glass mass V s as 
a linear function of the drawing force F 

where V 0 and ~ are constants. 

The equation and boundary conditions describing the fiber drawing process have tfe 
form [6-8] 

(i) 

Y z z Y t -  Yz~Yz  = ~]YzF/So, 

Y (Z, O) = Y~ (Z), SoVz (0, t) = Si (t), Y~ (0, O/Fz (0, ~) = - -  V ,  

Y t ( L ,  t ) /Y z (L ,  t ) = - - V  a, ZC[O, Lh tE[O, ~] .  

(2) 

(3) 

Here Si(t), Vs(t) , Vd(t) are functions describing the change with time in the initial sec- 
tion of the blank, the supply and drawing rates, respectively, S O is the transverse seztion 
area of the undeformed blank, D(Z) is the glass mass flow, L is the length of the deforma- 
tion zone, Y(Z, t) is a function designated "motion" [8]. The physical quantities being 
observed, V and S, the jet velocity and section, are expressed in terms of the function 
Y(Z, t) by means of the formulas 

S = SoY  (Z), V ::  - -  V t / F  z . 

Let us introduce dimensionless variables and parameters 

Y* = Y/L ,  Z* = Z/L, t* = WS~L, V* = V/V s, S* = S / S  o , 

(4) 

(5) 

Here VsSt is the stationary value of the supply rate. It is assumed in such a dimensionless 
formulation that by giving a certain supply rate VsSt for the statinary mode, we selecn such 

and V 0 in (i) that the selected VsSt would satisfy this relationship for an appropriate 
value of the stationary force. The solution of (2) and the boundary conditions (3) fo~: the 
stationary mode has the form [8] 

Z / NFst __ Z1 
-~-'~- ~L 

yo(z, t)----o j" exp ~ SoVs d Z l - - t ,  Fst (6) 

Substituting (6) into (i), we obtain that ~i from (5) should be determined from the relation- 
ship 

= _ v0)/(f  (7) 

from which it follows that the value ~i = I/W corresponds to the case V 0 = 0. 
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Representing the function Y(Z, t) in the form of the sum of its stationary value Y0 
and the nonstationary perturbing addition P(Z, t) multiplied by the smallness parameter g 
(here and henceforth we omit the asterisk in writing the dimensionless quantities), we ob- 
tain 

r (z, ,) = ro + ~P (z, O. ( s )  

Substituting (8) into (2), after linearizing we obtain an equation describing the perturba- 
tion of the stationary drawing mode 

exp (WZ) P zz + W exp (W Z) P z 4- P zt 4- W P t = - -  ~ (t), 0 ~ Z ~ 1, ( 9 )  

where ~(t) is a function describing the perturbation of the drawing force. 

The general solution of (9) is obtained in [8] and has the form 

zr t \ I 

0= exp (-- WZ)[]f I~ exp (-- Wx)~t) -- ~ (y)dy]exp (Wx)dx 4- exp (-- WZ) c (t), P(Z,  ( 1 0 )  
--Lo \ w  / a 

w h e r e  p ,  c ,  f a r e  unknown f u n c t i o n s  t h a t  a r e  d e t e r m i n e d  f r o m  t h e  b o u n d a r y  c o n d i t i o n s ,  

Let us examine the problem of the stability of the stationary fiber formation process 
that is given by the following initial and boundary conditions 

p(z ,  o ) =  Po (z), p~(o, 0 = o, p, (o, t ) = -  ~ (t), 

Pt  (1, t) = - -  exp (W) Pz (1, t), 

here the function P0(Z) describes the perturbation of the initial stationary state. 

Satisfying the solution (i0) by the first three boundary conditions (Ii) we obtain 

( 1 1 )  

p (z ,  t) = 

(v ,  t) = - - -  

Z 
exp (-- WZ) ! {WPo [~p (y, 0 ] 4 -  OPo [~ (y,OV t)] } exp (Wv) dv 4- 

Z 
4- (1 - -  W%) exp ( - -  WZ) - -  1 ~ ~(s)ds, 0 ~ t ~  1 - -  exp ( - -  WZ) 

W o W 

exp (--Wu)--I 
Z W +g 

(1 - -  % W )  exp ( - -  WZ) - -  1 ( 1 - -  exp ( - -  WZ) 
W ~ (s) ds, t > /  W 

t 0 

1 
In [exp ( - -  WV) 4- Wt], P (0) = P~ (0) = O. 

W 

( 1 2 )  

As is customary in stability theory, we examine the asymptotic of the evolution of a 
certain initial perturbation P0(Z) in time and we determine the value of the modal parame- 
ters for which the process of fiber formation is stable. 

Substituting (12) in the fourth boundary condition (ii), after manipulation we obtain 
an integral equation in the function p: 

0 [ exp(-- W) 1 ] I-- exp(-- W) [I-- %W] 
(1 - -  % g )  S ~ (s 4- 0 ds = ~ (f). ( 1 3 )  

exp(--W)--I (Ws ~-  1) 2 W8 -@ I W 
w 

Following the normal mode method, we represent the desired function p in the form 

(t) = ~o exp (r cr = ~ 4- ir t*o = const .  (14) 
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Fig. i. Stability domain of 
the process for V s = V 0 + ~F. 

Substituting (14) into (13) and separating real and imaginary parts of the equation, we ob- 
tain a system of transcendental equations in g and ~. The roots g0, m0 of this system gov- 
ern the damping and frequency of the appropriate modes. To establish the critical values 
of the parameters governing the passage of the process from the stable to the unstable 
mode ($ changes sign here), we set ~ = O. Consequently, we obtain the following system of 
transcendental equations 

o [exp(--W) 1 ]. cos oosds= exp(--W)[%W-- 11 + 1 
; (Ws+ 1) z Ws+ 1 W ( I - - % W )  

, e x p  ( - - W )  - -  I 

(15) 
0 

j. [ exp(-- W) I ]sin~0sds=O, 
exp (- ~) -1 (Ws + 1) ~ Ws + 1 

W 

that can be solved for m 0 and We The least of the roots W of this system determines the 
critical value of W for which buckling of the stationary drawing mode occurs. 

Let us note that the system (15) degenerates for ~ = I/W. To obtain the answer to the 
question about the stability of the process we again turn to (12) in this case. Subslituting 
~i = I/W therein and determining D from the fourth boundary condition of (ii), we obtain 

z exp b '~ l [ i  i exp (-- WZ) ; F(y, t ) ( W F ) d y  --~'~ OF (y, s)exp (--W)-- 
8s 

--WF(y, s) exp(Wy) d y + e x p ( W )  F (1, s) ds, 

P (Z, t) = { (16)  

IO~ 
t ~  1 - -  exp (-- W) 

W 
!0, t ~ l -- exp (-- W) , 

t W 

where F ~ ,  s) = OPo [~ (y, s)] 
Os 

+ wPo [~p (v, s)l. 

Hence it is seen that for any perturbation of the initial state, the perturbations it 
caused in the drawing process would seem to be "contracted" with the jet in a time not ex- 
ceeding (i - exp(-W))/W. Therefore, any initial perturbations of the process vanish in a 
finite time for any W and, therefore, the process remains absolutely stable on a curve de- 
scribed by the equation a I = I/W in the plane (~i, W). The boundaries of the whole stabil- 
ity domain in this plane are determined from the solution of the system (15), as has already 
been mentioned. 

The domain of the parameters ~i, W, in which the drawing process remains stable (shaded 
domain) is represented in a logarithmic scale in Fig. !. The line ~i = I/W is superposed by 
dashes. As is seen from the figure, for small W the stability domain extends from zero val- 
ues of ~i far beyond the absolute stability line. As W grows the stability domain is com- 
pressed and drawn out in the form of a narrow strip (in the logarithmic scale) along the 
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line W = I/~ I. In this domain (W e 7) the stability domain boundaries are described approx- 
imately by the following expressions 

W =  1,17/a t, W = 0 , 8 6 / % .  (17) 

Let us note that for ~i = 0.13 the drawing process remains stable for any W ~ 8.6 while for 
every al ~ 0.13 two stability domains in W exist that can provisionally be called normal 
and anomalous. The normal stability domain boundaries in W extend from zero to values 
close to the classical stability boundary for an isothermal drawing process (W = 3) and 
weakly dependent on el- The anomalous stability domain lies near W = i/a I and its boundar- 
ies are determined by (17). For the case of drawing from a cylindrical draw-plate, it can 
be shown that in the case of constant viscosity the parameter ~i is determined entirely by 
the draw-plate geometry and the length of the deformation zone by the relationship 

% = 3r~/8Ll, 

where r 0 ,  s a r e  t h e  d r a w - p l a t e  r a d i u s  and l e n g t h .  C o n s e q u e n t l y ,  even f o r  l a r g e  W, we ob- 
t a i n  a s t a b l e  d rawing  mode w i t h  c o n s t a n t  v i s c o s i t y  by s e l e c t i n g  t h e  p a r a m e t e r s  so as  t o  
s a t i s f y  

3Wro 
1,17> ~ ~.~. 0,86. 

In connection with the fact that the drawing process in which ~i = I/W is stable, in- 
vestigation of the reaction of the process to technological parameter perturbation is of 
interest. This class of problems is described by the following boundary conditions 

Pz (0, t) = ~ (t), Pt (0, t) = -- ~ (t) -- p (t)/W, (18) 

Pt (1, t) = - -  exp (W) Pz (1, t) - -  x (t). 

Here ~(t), ~(t) are functions of the time that describe perturbations of the initial trans- 
verse section and the drawing rate. 

Let us consider the reaction of the process to a perturbation in the drawing rate (~ = 
0). Satisfying the solution (i0) by the boundary conditions (18), we obtain 

t 

P (Z, t) = - - e x p ( - -  W) ~ p(s) ds. (19) 
0 

Since  t h e  f u n c t i o n  P d e f i n e d  by t h e  e q u a l i t y  (19)  i s  i n d e p e n d e n t  o f  t h e  space  v a r i a b l e  Z, 
t h e n  a c c o r d i n g  t o  (4) and (8) we o b t a i n  

8S = O. 

This means that although the drawing rate fluctuations indeed occur they result in such syn- 
chronized changes in the supply rate because of the natural feedback through the drawing 
force according to the relationship V s = aF that the output section does not change. There- 
fore, the case with zero parameter V 0 in (i), being special in the absolute stability sense, 
is moreover still insensitive to drawing rate perturbations. 

Let us determine the fiber output section perturbations in the case of fluctuations in 
the initial section of the glass blank (< = 0). Using the first two boundary conditions in 
(17), we obtain 

f x 

P(Z, t) = exp(--WZ) J" [ ~ ( x ) - -  �9 .[ ~(s) ds] dx 
[W(x--t)-}- 11 ~ 

t+ ~P I-~z~- 1 o ( 20 ) 
W 

t 

It follows from (20) that perturbations of the jet output diameter in the case of initial 
section fluctuations are independent of drawing force oscillations that are felt only in 
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Fig. 2. Amplitude-frequency characteristics for different 
W in the case of periodic initial section perturbations: 
i, 2, 3, 4, 5, 6) W = 15, i0, 5, 3.5, 3, 2, respectively. 

Fig. 3. Stability domain of the process for V d = V 0 - ~F. 

the velocity perturbations. Differentiating (20) with respect to the space coordinate and 

t 

W exp (-- W) .[ ~ (s) ds - -  
0 

setting Z = i, we write 

6 S = P z ( l ,  t ) = q )  I t .  ~ e x p ( - - W ) - - t ]  
w + 

t3 c .,exp ( - - W ) - - I  
W 

- -  W .[ q) (s) ds - -  W exp (-- W) • 
0 

• ff w �9 [W (s - -  t) + 112 ~ e x p ( - -  )--1 0 
W 

( 2 i )  

Using the solution (21) we determine the reaction of the fiber formation process to periodic 
perturbations of the initial transverse section. To do this, we represent the functions 
P(Z, t) and ~ (t) in the form 

(0 : exp (-- i~ O, P (Z, t) = exp ( - -  io~t), F (Z) = F 1 (Z) -}- iF~ (Z). (22)  

S u b s t i t u t i n g  (22)  i n t o  (21)  and s e p a r a t i n g  r e a l  and i m a g i n a r y  p a r t s  o f  t h e  e x p r e s s i o n  )b- 
tained, we find 

W 
F1 (1) = exp (-- W) -k- exp (--  W) A (o~) ,f sin___~x dx --I- 

x 
---~ exp (- -W) 

6) 
W 

+ exp (-- W) B (~o) S cos_._.~x dx, (2 3 ) 
X 

exp (--  W) 

F~ (1) = exp (-- W) A (co) 

oJ 
W 

COS X 

X (9 -~ exp (-- W) 

60 
W 

- -  dx - -  exp (-- W) B (o~) , i' sin x 
X 

(o 
exp (- -W) 

---- dx, 

where 

O) (0 (0 ] 
COS - -  , A ( o ~ ) = e x p ( - - W )  s i n ~ q -  W W 

01 (0 (0 ] 
B(~o) : e x p ( - - W )  cos s i n ~  . 

W W W 
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The results of the solution are represented in theform of amplitude-frequency characteris- 
tics that describe the ratio between the amplitude of the relative jet output section per- 
turbations and the amplitude of the relative initial transverse section perturbations 

Ae = ] OS~176 n = exp (W) ]/F~ (1) + F~ (1). (24)  

There follows from an analysis of the solutions (23) in the case m/W << i that 

Ae = -I/iW + 1)2+ 0, 2 . (25)  

The expression (25) yields the gain coefficient of the jet output section fluctuation ampli- 
tude in the low frequency domain m ~ 10 -3 Hz, most characteristic for the case of perturba- 
tion of the blank section. The results of computing A m for different W are displayed in 
Fig. 2. It is seen from the figure that as the rate coefficient increases the reaction to 
the initial section perturbation grows. Let us note that for W ~ 5 the dependence of A m on 
the frequency m is practically linear. A numerical computation showed that for these values 
of W the linearity is not spoiled up to m = 5000 (50 Hz). As W (W < 4) diminishes the am- 
plitude-frequency characteristics are explicitly nonlinear in nature, here the process reac- 
tion to the initial section perturbatins diminishes. Let us note that the peak AFC (ampli- 
tude-frequency characteristic) values are independent of the perturbation frequency for W 
3. 

Investigation of the stability of the process in which the drawing rate also depends 
on the drawing force 

= P ~ - - ~ F ,  Vo, ~ - - c o n s t  (26) 

is of interest. In this case the boundary conditions have the form 

Pz(O, 0 = O, P~(O, l) = O, P~(1, 0 = - - e x p  (W) Pz(1, t) + %~(t). (27)  

The s o l u t i o n  (10)  t h a t  s a t i s f i e s  t h e  f i r s t  two bounda ry  c o n d i t i o n s  in  ( 2 7 ) ,  has  t h e  form 

exp  ( - - W Z ) - - I  exp ( - - W Z ) - - I  

~+ ~ ~ (s) as 1 ~v exp (-- WZ) t+ 
P(Z, t ) = a + - - - ~ -  ! ~(s)ds -- iV tS W(s--t)+1 (28) 

Substituting (28) into the third boundary condition in (27), using the representation (14), 
we obtain a characteristic system of transcendental equations for the spectrum of the eigen- 
values $ and m: 

0 

�9 (Wy + 1) 2 exp ( - -W)  -- 1 
W 

1 ] exp (L Y) cos mvdg ----- 
W y q - 1  j 

I + %W -- exp (-- W) 

W 
( 2 9 )  

0 

exp (~y) sin ,mydy = O. 
exp ~- ~v~ - I  (Wy -{- 1) z WV + 1 

W 

The result of a numerical computation are represented in Fig. 3. There follows from the 
graph of the dependence of the critical values of the rate coefficient W on the parameter 
al that the stabilizing effect is very much weaker in this case than when utilizing the 
boundary conditions (i). It is seen from (29) that as al grows the domain of W for which 
the drawing process is stable is expanded and an al can always be found for which drawing 
can be performed in a stable mode for any given W. However, the technical realization of 
such a process is made difficult because of the high values of the parameters V 0 and ~l 
because of the weak dependence of W on el- 

Q 

2. 
3. 
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THIXOTROPIC PROPERTIES OF ELECTRORHEOLOGICAL SUSPENSIONS 

IN CONTINUOUS DEFORMATION 

Z. P. Shul'man, V. G. Kulichikhin, V. E. Dreval', 
and E. V. Korobko 

UDC 665.45:532.135 

The article studies the peculiarities of the mechanical behavior of suspen- 
sions, structure-sensitive to electrical effects, in steady and transient 
regimes under continuous shear strain. It was found that the destruction 
of the structural carcass is preceded by an induction period, and the depen- 
dence of its time on the shear stress is described by the ratio between time 
to rupture and load for solids. 

The authors of [1-4] showed that on the basis of the electrorheological effect (ERE) 
it is possible to devise various kinds of devices and elements: relays, regulators, adjust- 
ing mechanisms, dampers, braking devices, locking devices, stopping elements of hydraulic 
systems, electromotors, kiiovoltmeters, resonators, etc. The use of the ERE for fastening 
mechanically unstable, pliable, weak materials to be machined, which are widely used in 
practice [5], is extremely important in machine and instrument construction. 

At the Institute of Heat and Mass Exchange extensive research has been carried out for 
the last 35 years to determine the suitability of dielectric disperse systems to respond to 
electric impulses [6-9]. The investigations were complex and concerned a wide range of 
problems, aiming at the discovery of the inherent regularities of ERE and at working out 
physical concepts of its nature. It was shown that the magnitude and kinetic traits of the 
ERE are determined by the structural and rheological state of the medium. This state is 
characterized by the number of particles of the solid phase included in the interaction, by 
the detectability of the structure, the strength of the necks determined by a certain magni- 
tude of mutual adhesion of particles and adhesion to the electrodes, and also by the length 
of their existence [7-9]. 

The regularities of the effect of an electric field on the processes of transfer in 
electrorheological suspenisons (ERS) were studied by many authors [6, 10-14], the research 
being carried out with the aid of capillary, rotational, and vibration viscometers. The 
following features were discovered: nonlinearity of the hydraulic characteristics of flow 
rate vs. head in an electric field, pseudoplastic behavior of the medium, an increase of 
the effective viscosity and of the modulus of elasticity by several orders of magnitude, 
the appearance of initial shear stress on the flow curves. 
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